An unusual role for a mobile flavin in StaC-like indolocarbazole biosynthetic enzymes.

نویسندگان

  • Peter J Goldman
  • Katherine S Ryan
  • Michael J Hamill
  • Annaleise R Howard-Jones
  • Christopher T Walsh
  • Sean J Elliott
  • Catherine L Drennan
چکیده

The indolocarbazole biosynthetic enzymes StaC, InkE, RebC, and AtmC mediate the degree of oxidation of chromopyrrolic acid on route to the natural products staurosporine, K252a, rebeccamycin, and AT2433-A1, respectively. Here, we show that StaC and InkE, which mediate a net 4-electron oxidation, bind FAD with a micromolar K(d), whereas RebC and AtmC, which mediate a net 8-electron oxidation, bind FAD with a nanomolar K(d) while displaying the same FAD redox properties. We further create RebC-10x, a RebC protein with ten StaC-like amino acid substitutions outside of previously characterized FAD-binding motifs and the complementary StaC-10x. We find that these mutations mediate both FAD affinity and product specificity, with RebC-10x displaying higher StaC activity than StaC itself. X-ray structures of this StaC catalyst identify the substrate of StaC as 7-carboxy-K252c and suggest a unique mechanism for this FAD-dependent enzyme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial biosynthesis of antitumor indolocarbazole compounds.

Rebeccamycin and staurosporine are natural products with antitumor properties, which belong to the family of indolocarbazole alkaloids. An intense effort currently exists for the generation of indolocarbazole derivatives for the treatment of several diseases, including cancer and neurodegenerative disorders. Here, we report a biological process based on combinatorial biosynthesis for the produc...

متن کامل

Biosynthetic Gene Cluster for the Cladoniamides, Bis-Indoles with a Rearranged Scaffold

The cladoniamides are bis-indole alkaloids isolated from Streptomyces uncialis, a lichen-associated actinomycete strain. The cladoniamides have an unusual, indenotryptoline structure rarely observed among bis-indole alkaloids. I report here the isolation, sequencing, and annotation of the cladoniamide biosynthetic gene cluster and compare it to the recently published gene cluster for BE-54017, ...

متن کامل

Structural studies of rebeccamycin, staurosporine, and violacein biosynthetic enzymes

The biosynthesis of medically relevant bisindole natural products rebeccamycin, staurosporine, and violacein from the common starting material L-tryptophan involves shared enzymatic transformations. However, the pathways diverge at two steps, each involving a reactive, bisindole intermediate. We have taken a structural approach to characterize the biosynthetic enzymes responsible for these dive...

متن کامل

Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243.

Rebeccamycin, a member of the tryptophan-derived indolocarbazole family, is produced by Lechevalieria aerocolonigenes ATCC 39243. The biosynthetic pathway that specifies biosynthesis of this important metabolite is comprised of 11 genes spanning 18 kb of DNA. A presumed early enzyme involved in elaboration of the rebeccamycin aglycone is encoded by rebO, located at the left-hand region of the r...

متن کامل

Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2012